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ABSTRACT

N

The equation of conservation of mass and momentum for two-phase flows

are derived by applying a generic averaging process. The properties of this

averaging process are discussed. Constitutive equations are proposed for the

1

interfacial force. 1In addition, simple assumptions are made for

the Reynolds

stresses and the fluid viscosity. These assumptions are examined for transition

layers.
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CONTINUUM MODELING OF TWO~PHASE FLOWS

Donald A. Drew'

Introduction

The flow of two materials, one dispersed throughout the other, has

received much attention in recent times. Unfortunately, at this time, there
seems to be no set of equations which is regarded as fundamental, from which
other models can be derived as approximations. (Consider the analogy with
£luid mechanics, where the incompressible, inviscid equations are thought to
be valid approximations outside of shear layers and boundary layers, when
thermal and sonic effects are unimportant.)

Many researchers derive equations of motion by applying an averaging
process to the microscopic -equations of motion. The choice of averaging ‘
process is dictated by the taste of the researcher as well as the particular
problem studied. 1In this paper, we give a derivation of the averaged
egquations by applying a generic average. The relation of the generic average

to time~ and space~averaging is discussed.

Once believable equations of motions have been formulated, it is natural
to study their predictions in relatively simple flow situations. Often the
constitutive assumptions used in the model are derived and/or tested on
uniform flow situations. We give a discussion of transition layers in two-
phase flows. A transition layer is a thin region where the concentration of

one material changes rapidly in space. An example is the "interface" between

*
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
NY 12181,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




a carbonated liquid and its foamy “"head". An adequate description of these
transitions provides a harsh test of the constitutive assumptions used in the
model.
EQUATIONS OF MOTION

Each material is assumed to be a continuum, governed by the partial
differential equations of continuum mechanics. The materials are separated by
an interface, which is a surface. At the interface, jump conditions express
the conditions of conservation of mass and momemtum.

The equations of motion for each phase are (Truesdell and Toupin 1960)

(1) conservation of mass

92, Yooy =
%t + Vepy =0

(2) conservation of linear momentum
36 4 Vepvw = Ve 4 of (2)
valid in the interior of each phase. Here p denotes the deﬂsity, v the
velocity, T the stress tensor, and f the body force density. Conservation
of angular momentum becomes ¥ = !ﬁ, vwhere t denotes the transposed. At
the interface, the jump conditions are
(1) jump condition for mass
(p(v = v,)en] =0

(2) Jjump condition for momentum

{ov(v - v1)°n - ¥en) =0 . (4)
Hexe [ ) denotes the jump across the interface, v, 1is the velocity of the
interface, and m is the unit normal (Aris 1962). We shall assume that n
points out of phase k, and that the jump between f in phase k and £ in

L

phase £ defined by [f]) = £ - fk, where a superscript

k denotes the limiting value from the phase k side. As a sign convention
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for the curvature, we assume that X is positive (concave) toward -m. The
mass of the interface and surface stresses have been neglected. We do not
discuss any thermodynamic relations in this paper.

Constitutive equations must be supplied to describe the behavior of each
material involved. For example, if one material is an incompressible liquid,
then specifying the value of p, and assuming T = -pX + (W + (Vb)t)
determines the nature of the behavior of the fluid in that phase. Similar
considerations are possible for solid particles or a gas. The resulting
differential equations, along with the jump conditions, provide a fundamental
description of the detailed or exact flow.

Usually, however, the details of the flow are not required. For most
purposes of equipment or process design, averaged, or macroscopic flow
information is sufficient. Fluctuations, or details in the flow must be
resolved only to the extent that they affect the mean flow (like the Reynolds
stresses affect the mean flow in a turbulent flow).

Averaging

In order to obtain equations which do not contain the details of the
flow, it has become customary to apply some sort of averaging process. We
present a generic averaging method, and its results.

Let < > denote an averaging process so that if f(x,t) is an exact
microscopic field, then <f>(x,t) is the corresponding averaged field.

An averaging process assigns average values to certain variables. The
ensemble, or set of possible outcomes, can be taken to be the possible flows
in some apparatus where the initial and boundary conditions which are
prescribed are equivalent in some sense. For example, for spherical
particles, it may be necessary to give the statistical distribution of the

positions and velocities of the centers of the particles at time t = 0 such




- that the average number density amnd average particle velocity is the same for

all equivalent flows. VWe shall assume that there is some ensemble I, with

some appropriate weighting u(w)de so that the average of f is given by

<O (x,t) = In £(x,t,w)uwde .

Two cases can be digcussed. If the flow is nearly steady, so that a time

tranglation T makes no essential difference in the ensemble, it may be

enough to consider the subset of the entire ensemble which consists of

translations in time of amount 7. We assign a weight u(T1) to the

likelihood of the flow whose ocutcome at time t is f(x,t-T), where

f(x,t) is the outcome at time t in some flow. The average of f is then

taken to be

< (x,t) =[O, fxt-nunar .

This is classical time averaging; it is often used with

1
T if 0 < t<T

W =
0 otherwise , !

although other averages are possible.

If there are no boundaries in the flow (that is, boundary effects are

unimportant), then small spatial translations should make no difference in the

ensemble.

In analogy to the abowve, the average

<> (x,t) = [ . f(xts,t)u(s)ds
s R3

can be defined. This is the classical space average; it is often used with

if sev

v
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vhere V is some volume (for example, a sphere). Again, other averages are

possible.
Thus, in some sense, ensemble averaging contains space and time averages

as special cases. The averaging process is assumed to satisfy

<L+ = P> + < (5)
«HP = H<P (6)
<> = ¢ (7)
<%> = % <> (8)
<-:{:> - -a%i- <> . (9)

The first three of these relations are called Reynolds rules, the fourth
is called Leibnitz' rule, and the fifth is called Gauss' rule.
In order to apply the average to the equations of motion for each phase,
we introduce the phase function
X, (x,t} which is defined to be
1 if x 1is in phase k at time ¢

xk(x,t) = (10)
0 otherwise .

We shall deal with X, asa generalized function, in particular in regard to

differentiating it. Recall that a derivative of a generalized function can be
defined in terms of a set of "test functions” ¢, which are "sufficiently

M

smooth® and have compact support. Then * and = are defined by

i
>
f = (x,t) §(x,t)dmdt =
g

R R
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[ 3 35 (mt)o(x,t)dmde =
R XR i
)
-- (x,t) 2 (x,t)amat . (12)
Raik xk axi
It can be shown that
x,
il '1'“‘1:' ] (13)

in the sense of generalized functions.

If £ is smooth except at S, then fvxk is defined via
Inam £9X daxae = [0 [ n €% asae , (14)

where B, is the unit normal exterior to phase k, and £k denotes the
limiting value of £ on the phase~k side of S.

It is also clear that ka is zero, except at the.interface. Equation
(14) describes the behavior of ka at the interface. Note that it behaves
as a "delta-function", picking out the interface S, and has the direction of

the normal interior to phase k. .

Averaqed Equations

In order to derive averaged equations for the motion of each phase, we

multiply the equation of conservation of mass

o e " e eyt % P P e e o

valid in phase Xk (1) by X, and average. Noting that

’&%E'%c'xk""’%":ixk‘”‘”x'vﬁ (15)
and .
xk Vepvy = V'xkpv - pvovxk . (16)

we have
% <xkp> + v«v<'ﬁ‘pv> = <[p(v-v1)]k-ka> . (17)

Similar considerations for the momentum equations yield

3
3t K PV V-<}S‘pm = v-<xk'r> + <x o> /

(18)
k
+ <[av(v-vi) -7 V:S(> .

-6=




The terms

and

k side of the interface.

2

1

k=1

2

k=1

1976).

time) of phase k is defined by

We note that

. and
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k -
<[p(v~vi)] ka> l‘k

k
<[Dv(v~v1) 7] -ka> - N
are the interfacial source terms.
and causes discontinuous quantities multiplying it to be evalued on the phase~

The jump conditions come from equations (3) and (4).

<[p(v-v1

E <[pv(v-v1) - t]k°W(k> =0 ,

(19)

(20)

As noted, Wtk picks out the interface,

We have

2

K

)]Fevk >~ ] T =0 (21)
k=1 X

(22)

Applying a wore specific averaging process (time averaging, for example)
requires a different set of.manipulctions regarding the interfacial source
terms (Anderson & Jackson 1967, Drew 1971, Ishii 1975, Delhaye and Achard
Almost all of the derivations for specific averaging processes seem to
be more complicated than the above; however, the trade-off for the simple
derivation is that all manipulations now involve generalized functions.

The volumetric concer.tration (or volume fraction, or relative residence

q = x> . (23)

? x

% - "5&"5’ (24)
(25)

v% = <“k> .




There are two types of averaged variables which are useful in two-phase

mechanics, namely the phasic, or !k-wtight.d average, and the mass~weighted

average. Which is appropriate is suggested by the appearance of the quantity

¢ is defined

The phasic average of the variable

in the equation of motion.

by

[l LAY

and the mass weighted average of the variable ¥ is defined by

“k - "‘k"’/%;x . (27)

It is convenient to write the stresses i; in terms of pressures plus

extra stresses. Thus,

-~

& - -ka + & . (28)

It is expected that readers familiar with fluid dynamical concepts are

familiar with the concept of pressure in fluids; in this case, 5; can be

If one of the phases

thought of as the average of the microscopic pressure.

consists of solid particles, the concept is less familiar. In this case, the

microscopic stress (involving small elastic deformations, for example) is

D e L

thought of being made up of a spherical part (actinj ejually in all

=4 e STy 4,

directions) plus an extra stress. The spherical part, when averaged, yields

the pressure ;g in equation (28).

It has further become customary to separte various parts of the

This is done by defining the interfacial

interfacial momentum transfer term.

velocity of the kth phase by
[ ]
l‘] v ¥ <[pv(v-v1)] ka> ¢ (29)

and the interfacial pressure on the kth phase by

2 k
Py,i | 7q 17 = @WK > g, . (30)
Equation (30) is the dot product of Vck of the "standard® definition (Ishii .

1975) of the interfacial pressure. The standard definition uses three



equations to define one scalar quantity, and cannot be a generally valid
definition. Here the remaining part of the contribution of the presasure at
the interface is lumped with the viscous stress contribution at the interface,
and ig treated through the use of a constitutive equation. Thus, we write

(.|
IJ‘ = rk'k,:l - pk'iv% + l& ' (31)

where ll: = <(p-pk' 1)"ka - {'ka>_ is referred to as the interfacial force
density, although it does not contain the effect of the average force on the
interface due to the average interfacial preasure. The term .Pk, 17%, which
does contain the force due to the average interfacial pressure, is sometimes
refexred to as the bouyant force. The reason for this terminology is, of
course, that the buoyant force on an object is due to the distribution of the
pressure of the surrounding fluid on its boundary.

With equations (23) and (26) - {(31), the egquations of motion (17) and
(18) become

e

% Py

3 -
3t + V-qkokvk - Pk (32)

W P
akpk'k “

etV qavw = -q W + Veq (T + q)

+ rk'k,i + (1:\,(.:L - pk)V% (33)
e

The jump conditions (21) and (22) are

2
! =0 (34)
K=1
1 .
kz, %t * P, "% * =0 . (35)




Adequate models for compressibility and phase change require

consideration of thermodynamic processes. These are beyond the scope of this
paper; therefore we shall restrict our attention to incompressible materials

where no phase change occurs. Thus we assume that

;L = constant (36)
and
rk =0, (37)
In order to simplify the notation, we shall drop all symbols denoting
averaging.

CONSTITUTIVE EQUATIONS

In order to have a useable model, relations must be given which specify
the stresses (T + ‘k)' the interfacial force density H:, and the pressure
differences p) - Px,i’ consistent with the equations of motion and the jump
conditions.

The fundamental process consists of proposing forms for the necessary
terms within the framework of the principles of constitutive equations,
finding solutions of th: resulting equations, and verifying against
experiments. The ideal end result of the process is a set of equations which
could be used to predict the behavior of the two-phase flow, for example with
a computer code. With the equations should come a set of conditions for the
validity of the values of the constants and othe. functions used in the
constitutive equations.

The stresses t* + ck, the interfacial force density

ns and the pressure differences Py = Px,y are agsumed to be functions of

c&, acklat, Vc&, ‘k' Vvk, 3‘&/3t, ees , where ... represehts the material




properties, such as the viscosities and densities of the two materials, and
other geometric parameters such as the average particle size, or the
interfacial area density.

For concreteness, we shall refer to phase one as the particulate, or
dispersed phase and include in that description solid particles, droplets, or
bubbles. Phase two is then the continuous, or carrier phase, and can be
liquid or gas. We shall denote

a= q (38)
so that
i-q = Q. (39)
It is evident that both & and 1-a need not be included as independent
variables in forming constitutive equations.

Drew and Lahey (1979) consider the general process of constructing
constitutive equations. The simplest reasonable set of assumptions leads to
models for the motions of the two materials which may be ill-posed. Drew
(1982) gives a review of the state of affairs.

Essentially, the problem and the reason for its importance can be
summarized in the following manner. The simplest model assumes that the
interaction forces are due to viscous drag, and that pressure forces

equilibrate across particles instantaneously. Thus,

C
d d_ 3 D
M =N =T o lv1-v2I(v2-v1) (40)
and
Py " P " P,y "P,4 "P- (41)

If the stresses lk + ‘k are ignored, the model has complex
characteristics, and hence is ill-posed. See Ramshaw and Trapp (1978). The
ill-posed nature of the model leads (theoretically) to solutions which grow

rapidly on a small length scale. This leads some to conjecture that the model

-t




is trying to resolve events on the microscale. The application of an average,

however, is supposed to lcse details of the flow; indeed, both (40) and (41)
specifically ignore flow details on the scale of the particle size and
smaller. The obvious conclusion is that equations (32 - 37), with assumptions
{40), (41) and neglect of viacous forces lack some mechanism which is
important on the particle scale. It is noteworthy that no difficulties arise
in numerical simulations with the ill-posed system. The reason for this is
that the instability inherent in the ill-posed system appears on a scale
comparable to the particle radius to a power which depends on the exact form
of the drag law used for Cpe Thus, if the mesh is not refined to the
particle size, no instabilities will be seen. This suggests that computation
with the ill-posed system with a reasonable mesh will most likely give good
results.

The above argument indicates some difficulties for stability
calculations. When is an instability not an instability? Presumably it is
unobserved if its wavelength is too small. It would be satiafying to find the
missing effect in the model and show how the model reduces to the isobaric,
inviscid model mentioned above. There is a long list of candidates for the
forgotten mechanism (Drew 1982) but no clear winner has emerged. The sensible
approach seems to be to examine various models on a mesoscale, that is, on a
scale which is small compared to the usual experimental verification flows
(such as laminar settling in a still fluid), but large compared to the
particle scale. These mesoscale calculations may indicate what sorts of terms
are needed to give a valid description on a smaller scale.

There is another reason for seeking the more complete model. If the ill-

posed model is the limit of some more complete model with some effects

neglected, if the neglect can be done by a set of formal manipulations on the

Zratvar s e




more complete model, the result may indicate whether some well-posed model

might do as well as the above ill-posed model. Moreover, it is always of
interest to find reduced models which contain the same features as the
original model.

We shall examine the effects of the viscous and Reynolds stresses on a
mesoscale motion, namely transition layers in vertical flow. If the flow is

vertical, and we denote the vertical velocities by

v - ulz,t)k (42)
v, = viz,t)k , (43)
we have

da, da
vy + ™ 0 (44)
m + (1=-a)v = j(t) (45)

3u Suy _ _. %
ap, at"'“az) a3 + ob(veu) -

(46)

-upg-'-—a-ac
1 oz 1

(1-a)pz(-:% + v %:-) = «(1~a) % + ob{u-v) = (1-0)029 +

47)
) 9 n
+ % (1-::)«2 + % (1-a)n-§ .
The function j(t) 1is the volumetric flux, and will be taken to be
constant. The stress models are
T, ™ 0 (48)
v

tz u e (49)

to represent the viscosity of the fluid. The particles are assumed to be

inviscid. 1In addition, the Reynolds stress terms ck will be taken to be

constants.
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For problems of sedimentation and transitions in fluidized beds, we shall
assume that Jj(t) = constant for t > 0.
Kinematic Waves
If we ignore inertia in equations (46) and (47) and set g, = 0, = 0 and
k=0, we have a model which reduces to a one-dimensional scalar

conservation law. 1If the pressure is eliminated from the resulting momentum

equations, we have

(1-a)(o1~92)9
v-u = B . (50)

Using (45) gives
u= 3= (t=a)(v-u) .
Hence

au-c)z(p,-pz)g
ol = Gj - b = f(d . (51)

Equation (44) with o given by (51) is a scalar conservation law for

alz,t).

Solutions can be found by the method of characteristics; on the

characteristics,
da
at 0 . (52)
gz _ f'(a) = constant . (53)

14

As long as no discontinuities occur, a is constant on characteristics.
If discontinuities occur, they must propagate at a speed given by
s- g, (s0
where [¢4] denotes the jump in the quantity ¢ across the discontinuity. A
discontinuity, or shock will persist if characteristics tend to come into the
shock. If character- istics diverge from the shock, then it will smooth

out. 1In Pigure 1, a shock from (a ,f(a)) to (a¥,t(q+)) is not stable if

14~




the region where a_ occurs is above the shock. This is because the
. churacteristics at a+ are moving faster than the shock., Note that contact

discontinuities are possible with this model.

f(a)

Figure |

For fluidization, 3j > 0. 1In order to describe a transition in
fluidization, we assume that the bed is fluidized at ¢t = 0- with a

concentrati ». o which corresponds to some value of the volumetric flow

rate j,. At time t = 0, the volumetric flow rate is instantaneously
changed to j. The flow~concentration diagram is given in Figure 1. The
simplest situation is depicted, consisting of an upward traveling bottom shock

(trangition) and an upward traveling top shock.

Figure 2 shows the consentration at some time ty, and Figure 3 shows

the solution in various regions of the t ~ z plane.
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Diffusional Reqularization

One way to understand shocks is to include in the model some means of

smearing them out. This can be done in the present problem by including the

diffusion terms. -  We continue to ignore inertia and viscosity.
procedure outlined above yields
m-f(a)-n-gf.

where

-16=

Repeating the

(55)
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(1-6)[(1-0)01 + uozl

D= 5 . (56)
The equation for a 1is a nonlinear diffusion equation
da 3(a) 3  2a
%t e w03 (57
In order to examine the transition, we let
a= a(z - st) (58)

where s is the speed of propagation of the traveling wave representing the

trangition. We obtain

d a da
3E [fla) - sal = % (» a;) . (59)

Integrating from =~» to £ gives
fla) ~ [fla) + sla- a)} =D 52 . (60)

The quantity in the bracket is the equation for the chord (in Figure 1 for
example), and f(a) is the flow-concentration curve there. If the curve lieg
above the chord, then A4w/df is positive. If the curve lies below the chorq,
then do/df is negative. The transitions go from a | to a where a is
the value of o where the left hand side of (60) is zero, that is, where the
curve and chord intersect. If D is small, the transition region is thin.
The diffusional regularization corresponds to the results obtained from shock
stability considerations.

Inclusion of the inertia of both phases complicates the situation
immensely. It can be shown that the thing which corresponds to the shock in
the kinematic wave model is not a 'shock in the model which includes inertia.

In order to study the tranaition, assume that a, u, v and p are
functions of £ = z - st, where s 1is the speed of the transition wave, and
a*a,uru,v>v_ as §*o a*a,udu,Vvsv as £ + o,

c*, “t and v, are related to 8 by (45) and (54). Substituting in the

equations (44 - 47) and eliminating p, u, and v gives




O o o

o +

u(1=-a )(v_-8)

(1-a)
(61)

+ E(a)a' + gla) =0

where
- a af p1(u_-s)2
Bla) = 0, + 0 =2~ 2 -
o
-—2— o 0-a) v (62a)
(1-a)
and
gla) = - 2 7 [£(a) - au -s(aa)] . (62b)
(1~a)

Note that if u = 0, and we wish to retain the picture given by the

characteristics of the scalar conservation law, we can do so only if

3( a) >0 (63)
for a between a and @ . In a gsense, equation (63) suggests that inertia
will be unimportant for transitions if diffusion is sufficiently large;
sufficiently large means so that equation (63) is satisfied.

Note from equation (61) with u=0 and 01 = 02 = 0, that inertia
without diffusion gives results opposite to the results from the scalar
conservation law.

The Effect of Viscosity

In equation (61), let a' = w(a)e Then o = w g_‘(';’ and equation (61)

becomes

a d(w2/2)
(1-m2 4¢

2
w

u(1-a_)(v_-s)

+ u1-a )(v_-8) 3
(1-a)

(64)
+ Bla)w + g(a) =0
Let us now define G(a) by

G'(a) = g(a)




A b i e e i e o 0 . gt P AT

and

Gla ) =0 if g(a) >0 for a < a< a
(66)
G(a_'_) =0 if gla) <0 for a < a< a, -
(We also asaume that (1-a){v-g) > 0.) Equation (64) becomes
2
4 .1/ w
0w 3 G53) +ctal = -8law . (67)

2
The curves H(a,w) = %{?gz) + G(a) are closed curves centered at a if
if gl{a) > 0, and q+ if g(a) < O. ‘See Figure 4. On a trajectory leaving

@ (if g(a) > 0) or a (if g(a) < 0), the function alf) satisfies

ag
which is negative if f8(a) > 0. Thus H decreases on a trajectory, giving

the transition from a to a (if g(a) > 0) or from a« to a (1if

gla) < 0). Since

b
a(1-a)2,u(1-a_)(v_-a)

gla) = ~ (f(a)=a u_ - s(a-a)) ,

we gee that if the curve f is above the chord, s(a-a ) + au_, then

g(a) < 0, and this type of transition can occur from a to a. On the
other hand, if the curve f(a) is below the chord s(a-a ) + au_, then
g(a) > 0, and the transition can occur from a to a . This &gain agrees
with the picture given by the characteristics for the one-dimensional
conservation law.

Conclusion

There are two distinct features of two-phase flow modeling addressed in
this paper, namely the averaging process, and transition layers.

The generic averaging process includes certain classical averages as
special cases and gives the same results as these classical averages when

ilppliod to the equations of motion.

-19-

L w(aw) = ~B(aw? (68)
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Figure 4

Transition layers are often observed in two-phase flows, and various
models for them have been used. The simplest model, that of the kinematic

wave, describes the situation when inertia, viscosity and diffusivity are {

negligible, but diffusivity dominates over inertia.
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